SIMC Sample problem: Who are colluding?

Preamble.

You have been tasked to help identify students who might have been colluding during tests. The
suspicion is that a few groups of students use a secretive and successful mode of communication
during tests to share their answers. If they did, then we expect their responses to multiple questions
on the test to be similar.

Fortunately, you know machine learning! Let us decompose into several more manageable tasks.

Loading the data.

loaded = np.load(’sample.npz’)

for k in loaded.keys():
print (f"key {k} has shape: {loaded[k].shape}")
>>> key sample_small has shape: (50, 25)
>>> key sample_larger has shape: (10000, 50)

Task 1: Plotting the design matrix.

design matrix for
50 students and 25 questions

-1)

=1, incorrect:

students

score (correct

5 10 15 20
score for each question

Figure 1: Small design matrix that compactly shows the test scores (right/wrong = 1/ — 1) for 50 students on a
test with 25 questions.

Getting to know the design matrix.

Linear algebra is essential to machine learning. Linear algebra does not merely condense large
datasets into compact matrices. Linear algebra helps us (1) understand key mathematical and sta-
tistical properties of these matrices and (2) standardize numerical operations that can be optimized
to execute in parallel on computing hardware (e.g., multi-core CPUs and GPUs).

We start by representing the students’ scores on a test as a large design matrix X. Each row
of X represents a particular student’s scores. Each of the 25 columns of a specific row indicates
the student’s scores for the 25 different questions on the test. So if the 10th student scores full

1



credit for question 20, then (row=10, column=20) of this matrix shows the value 1 (conversely,
value -1 if the student does not obtain full credit).

To help us abstract and generalize the problem (an important part of machine learning!), we
introduce index notation, which is commonly used in linear algebra. Let’s represent this design
matrix as X = X;;, where the first and second subscripts (i, j) denote the value at the i*" row and
5% column. For the example above, X 1020 = 1 if the 10th student scores full credit for question
20, otherwise X10720 = —1.

For completeness, let there be M students (i.e., rows of X arei =1,..., M), N questions (i.e.,
columns of X are j =1,...,N).

Plot your design matrix sample_small, similar to the one shown in Figure 1. Remember:
always label your axes!

Task 2: Write a simple routine to compute the following similarity
matrix:

N
Sz'j = XXT = ZXikak . (1)
k=1
e You should present your results visually, similar to Figure 2.
e Reminder: while the indices of a matrix are mathematically denoted 7 =1,2,..., N, the same
index starts from zero instead when represented in python ‘X[0], X[1], ... X[N-1]°.

Clustering with K-means.

To readily identify anomalies in the students’ test-taking behaviors, we will use a prevalent (but el-
ementary) unsupervised clustering algorithm: the K-means algorithm. As a clustering algorithm,
it finds similar subgroups (i.e., clusters) within a larger group of items. Being an unsupervised
algorithm, it can find clusters without needing you to label specific items (i.e., this student did
not cheat, that one cheated, etc.).

In this context, the K-means algorithm tries to find K groups of students that are more similar
within each group than between groups. Put differently, if we assign K = 3, then the algorithm
tries to partition the students into three groups where the scores of in-group students are more
mutually similar than the scores of out-group students. The reason the algorithm is termed K-
means is because it first starts off by assuming K = 3 sets of random scores as the mean score
within the three groups of students (i.e., gy ). The algorithm then proceeds in two alternating
steps:

e A) Update membership: Each student is tentatively assigned as a member to the K
group whose corresponding mean gy is closest to each student’s score. Each student’s group
membership is often called the labels.

e B) Update means: based on the group assignment in step (A), the means of each of the K
groups (i.e., py) are updated.

e C) Go back to step (A) if the means p, have changed appreciably; otherwise, the algorithm
ends.

This simple set of alternating steps (update membership then update means, and so on)
is surprisingly effective in partitioning students into distinct and meaningful groups. However,
2



similarity between 50 students

40

student |

20 T

similarity score

student

Figure 2: Similarity matrix for the small set of 50 students.

the K-means algorithm is very sensitive to how the initial X means are randomly picked. Hence,
implementations typically try different initial sets of K means, and pick the ‘best’ grouping amongst
these different initializations (in sklearn’s ‘KMeans’ implementation, the user sets the number of
initializations with the n_init parameter).

Task 3: Creating clusters (subgroups) of students with similar answers.

You can find an implementation of this algorithm in scikit-learn.
Use the K-means algorithm to find groups of students with similar responses. However, as you
might have realized, there is some luck and skill in picking the ‘best’ K.

e When K is too small, the scores amongst in-group students tend to be dissimilar.

e When K is too large, one or more groups might have very similar means. This indicates that
you have over-fragmented an actual group of students.

e When K is way too large (e.g., K ~ M), each group only has one student, hence defeating
the purpose of clustering.

e You should be able to group the students by their wrong/correct responses into a few clusters,
similar to the plots below when varying K = 3,12,40. You might have to vary the K (i.e.,
n_cluster in sklearn).



similarity between 50 students 50 similarity between 50 students 25 s similarity between 50 students
25 25
23 I I 23 23

17 1 - 40 17

w
S
©

07 =" o t— 9

student i (sorted)
w
similarity score
student i (sorted)
o
similarity score
student i (sorted)
similarity score

~
o
-

=
n n -9 ™ 1T '"’”"’F"’V’"’_"”_"_[”7 -9

-9 " [T

-1 o A P S - _— -1 ol -1

; & o
} - . o ; -15 0 e — . -15 0 - - - :

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
student j (sorted) student j (sorted) student j (sorted)

Figure 3: K-means cluster with too few (left), about right (middle), too many (right) K’s.

Task 4: Give a plausibility argument (without statistical rigor), given your
analyses up to now, about who might be colluding by copying each
others’ answers.

Just because two students have the same responses on a test does not mean that they have colluded.
There’s always a chance they will arrive at the same answers coincidentally. Given only the data
and analyses so far, can you come up with a convincing argument about whether you can or cannot
exclude the possibility that some of the students have colluded? Hint: you might not actually get
too far.

Task 5: Assuming you have an infinite number of non-colluding students
(impossible!), what is the average and standard deviation of obtaining
a particular similarity score for N questions?

You might have realized that Task 4 is challenging without a sound statistical model for student
collusion. After all, so far, you have only found students with similar scores, but not a causal proof
of how they came to have the same scores.

One approach in statistics is instead to consider the seemingly contrary scenario, known as a
null hypothesis, that none of the students colluded! Then, we determine in this null hypothesis
the likelihood that two (or more students) would have scores that appear to be very similar (or
identical) even though they did not collude. If two actual students’ scores in an actual setting do
appear this similar despite a very low likelihood, then it is likely they had, in fact, colluded.

Given that the average probability of getting the correct answer on any of the N questions in a
test is p, where 0 < p < 1, derive a mathematical expression in terms of p for the expected
average (S) and standard deviation oy in the score similarity S between two students
who independently did the test. The following might be definitions might be helpful:

all cases

(S)= > Pr(S=s)s, (2)

s.t. Pr(S = s) is the probability for a particular score s,

o? = (8% —(5)*. (3)
4



You can assume (somewhat incorrectly) that a student’s response to one question is independent
of the student’s responses to other questions. This is equivalent to modeling a student’s scores as
a random sequence of -1s (with probability 1 — p) and +1s (with probability p).

Task 6: Use Monte Carlo to estimate the average and standard devia-
tion of obtaining a particular similarity score for N questions.

A Monte Carlo simulation is a powerful computational tool for answering questions in uncertain
scenarios. This method was nicknamed by physicists after the Monte Carlo Casino in Monaco.
The idea behind this method is to use a computer to generate many random, probable scenarios
rapidly and evaluate answers within these scenarios.

In this case, using simple random number generators in Python (e.g., numpy.random.rand),
can you check your statistical expression in Task 57 Remember that your answer in Task 5 will
depend on the number of questions N on a test, where the probability of getting a question correct
is p. Here’s one approach:

e Generate many students’ random scores to N (say 100) questions. Here, you will should
assume a particular p (say 0.5).

e Then compute the average (S) and standard deviation oy score similarities S between all
pairs of such students. Remember, you will have to generate enough number of random
student pairs to have stable averages and standard deviations.

Task 7: Given a particular p for N questions, mathematically express
the probability distribution that two non-colluding students will have
the same similarity score.

By assuming (somewhat crudely) that a student’s response to one question is independent of the
student’s responses to other questions, argue that we can invoke the central limit theorem to derive
an expression for this probability.

You will need to use your mathematical expressions for the average and standard deviation
from Task 5 here.

Task 8: Can you identify the possibly colluding students amongst this
group of 10,000 students who each took a 50-question exam?
Here are a few hints.

e The scores of these 10,000 students are found in sample_large.

e Using your results from tasks 1-3, find students who might be colluding.

e Then using your results from tasks 5-7, make a statistical case for whether the identified
students have been colluding or not.

e Note that the difficulty of each question is not the same. Hence, to use your expression from
Task 7 to establish the null hypothesis, you can estimate each question’s difficulty p from all
the students’ average score.



