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Task 1

Task 1a Below are the rotated images;

Original 90° 180° 270°
: :..:|. ) ".'*-.' i e
I... - .: a | #l.

Figure 1: Orientations of Reference Image

Lemma 1 An algorithm to rotate a matrix by 90° clockwise involves the following two steps;
1. Swap the 1st and nth rows, 2nd and n-1st, etc.
2. Take the Transpose of the resulting matrix.

Operation 1 can be represented as multiplication by the anti-diagonal Identity Matrix.

0 0 01
0 0 1 0
Ty=1: " .. Do
01 --- 00
10 -~ 00

Therefore, the Matrix after rotation by 90° can be expressed as the following, with the final equality found
as the transpose of the anti-diagonal Identity matrix is identical to itself;

Agoo == (TlA)T = ATTlT — ATTl

Throughout our computation, the function np.rot90() (Harris et al., 2020) achieves the same result, with
greater computational efficiency, whilst relying on the approach of applying Linear Transformations as
outlined.

Task 1b

Orientation | 0° | 90° | 180° | 270°
# Cases 6 | 10 6 3

Task 1c Three copies of the master image were created by rotating the image 90°, 180° and 270° clockwise
in order to create templates for the four orientation classes. All of the matrices in the set where compared
to the four classes and sorted into the class corresponding to the template matrix they were identical to.
The number of matrices in each class were counted to give the number of matrices with each orientation.
(See Figure 2) Matrices were rotated by performing the Linear Transformations as outlined in Lemma 1,
implemented in Python with np.rot90() throughout.



task_1_counts = [0, 0, 0, O]

for i in taskl:

if np.array_equal(i, task_1_90):
task_1_counts[1] += 1

elif np.array_equal(i, task_1_180):
task_1_counts[2] += 1

elif np.array_equal(i, task_1_270):
task_1_counts[3] += 1

else:
task_1_counts[0] += 1

Figure 2: Counting the Number of Patterns in Each Class

Task 2

Task 2a See Below
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Figure 3: Rendered Master Image from Flattened Data

Task 2b

Orientation | 0° | 90° | 180° | 270°
# Cases 221 32 | 21 25

Task 2¢ The image was rendered by reshaping the flattened array into a 36x36 square matrix. This
can be done by letting the first 36 elements be the first row of the matrix, the 2nd 36 elements be the
second row and continuing in a similar fashion until 36 rows have been formed. In practice the np.reshape

command was more efficient (See Figure 4).

task_2_original_img = np.reshape(task2[0], (36, 36))
plt.imshow(task_2_original_img, cmap="BuPu")

Figure 4: Reshaping Flattened Array
In order to find the number of patterns corresponding to each orientation class, each pattern was

compared to flattened arrays of the rotated image at 0°, 90°, 180°and 270°, and the number of occurrences
where a pattern was equal to each orientation class was counted - as per Task 1.

Task 3

Task 3a The image was a 33x33 square
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Figure 5: First image of task 3 - rendered

Task 3b

Orientation | 0° | 90° | 180° | 270°
# Cases | 264 | 236 | 250 | 260

Task 3¢ See Below
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Figure 6: Unsorted and Sorted Design Matrices

Task 3d Using the factors of the size of the first element of the Task 3 array, several candidate shapes
can be determined. Of these, the square 33x33 case returned an intelligible image. This image was then
rotated into each orientation and flattened again in order to create four image classes, each with a different
rotation with respect to the master image. Then the other row vectors were sorted into each of the classes
and the number patterns in each class was counted. Finally, an array was created from each of the four
image classes in order and plotted as above (Figure 6). The same clustering algorithm from Task 2 was
used, instead of K-Means, as all patterns in each class were identical.

Task 4

Task 4a The average total pixel value is 1251.047.



task_4_row_sums = np.empty (1)
for i in task4:
task_4_row_sums = np.append(task_4_row_sums, np.sum(i))
task_4_row_sums = task_4_row_sums[1:]
np.average (task_4_row_sums) # return

Figure 9: Average Row-Sum Code

Task 4b See below.

Figure 7: Rendered Image Assuming Same Orientation

Task 4c See below.

Cluster 0

Figure 8: Fach of the Four Orientation Classes - Rendered

Task 4d The sum of every row in the design matrix was appended to a list and the average value of the
list was taken. This gives the average sum of pixel values for the image.

In order to render the image as if the orientations were identical, The average of each column of the
design matrix was computed and the pixel corresponding to that column was assigned the average value.
In order to sort the values, a K-Means algorithm was run on the set of all flattened row matrices in
the design matrix. K-Means is a heuristic, unsupervised clustering algorithm which broadly functions by
choosing a set number of initial points (in this case 4) at a maximum distance from each other (using
K-Means++ initialisation). Each datapoint is then assigned to its nearest cluster by Euclidean distance.
The mean of each cluster is then recalculated to create a new ‘centroid’ and the algorithm repeats until
the membership changes of each cluster become negligible.




def sort_to_clusters(matrix: np.ndarray, labels: np.ndarray) -> list:

sorting = [[], [], [], []1]

for i in range(matrix.shape[0]):
sorting[labels[i]].append (matrix[i])

orientations = []
for i in range(4):

orientations.append(np.array(sorting[i]))

return orientations
Figure 10: Code for Sorting from K-Means Output

numpy’s K-Means class returns labels {0, 1,23} after fitting. Each pattern is added to a list that
represents its label. This list is converted back into np.ndarray for more efficient operations later.

Task 5

Task 5a Similarly to the likelihood of r = 0°, the likelihood of r = 90° can be expressed as the following;

L(r = 90° | Ky, ) = Pr(ky | BAPr(ky | NPr(ks | BAPr(ke | BA) = BA(L = A)(1 — B’

Task 5b  From the results found in (a), and Eqn (3), the following expression can be derived simply

,C(T:OO | K(4),,u(4)) _ )\(1—5)\)3 _ 1—5)\ _ 1—ﬁ)\
L(r=90°| Ky, pwy) AL =X)L —=FA?  B(L—-A)  [—PBA

Task 5¢  From setting the expression found in part (b) equal to 1, the value for § can be found via the
following;

L(r=0°] Kuy, ji(a)) _1-BA
L(r =90°| Kwuy, ) B—pA

=1 = 1-pBA=0-0) = (=1

Task 5d Similarly to the 4 dimensional case, an expression can be obtained for the ratio of likelihoods
in the 16 dimensional square case;

L(aligned) _ L(r =0° | Ko, pas)) A1 — AP 18X
L(misaligned) — L(r =90° | K6, (16)) N LA = XN)(1 — B )

An identical result to the 4 dimensional case, thus suggesting an equivalent ratio of probabilities between
aligned, and misaligned, for a square of any n by n size.

Task 5e As there are no overlaps in the outlier tiles in the 0° and 90° cases, we can therefore form an
expression similarly to as in the earlier parts of this question.

L(aligned) L(r=0°| Kaey o) A3(1— A3 C(1=BAF <1 - m)?’
B = BA

L(misaligned) — L(r =90°| Kue), ptas)  (BA)P(L—=A)3(1— SN0 B3(1—N)3

Corollary Consider an n by n matrix with « outlier pixels, each with a probability of A, with the
remaining n? — « pixels having a probability of S)X. After rotating the matrix by 90° , let there be ~ total
overlaps. That is, outliers that exist in an identical location before, and after being rotated 90 degrees.



The assumption that all outliers will be filled at rotation 0° will follow throughout this corollary. As such,
the following expression can be found.
L(aligned) _ L(r=0°]Kuey, fwn2)) A (1 — 5)\>n2_a
L(misaligned) — L(r=90° | Ku2), fnz)  AT(L—A)o=7(BA)2=7(1 — BA)»+71-20

which simplifies to the following expression;

[,(aligned) . E(’I‘ =0° | K(nz), N(nQ)) . 1-— B/\ “
L(misaligned) — L(r =90° | K2y, fm2)) (B - ﬁ/\)
This aligns with the results as expected from the earlier elements of this task, as by simply setting o = (1, 3)
v = 0, for parts (a) through (c), and (e) respectively, an identical result is achieved. Furthermore, it gains
additional insight into the notion stated in part (c), that if the ratio between the likelihoods of 0 and 90
degrees occurring is equal to 1, does not necessarily imply that the confidence will be impacted. If we are
to let a equal to 7, this expression is set to 1. Intuitively, this will occur when the image is symmetric
under rotation, as all the pixels that are filled after rotating 90° are identical to those without rotation.

Task 5f As the order in which the pixels are arranged is not salient to the question, we will assume
the first M pixels to have average value p; = A, and pixels M + 1 through N to be y; = SA. Thus the
expression for log-likelihood can be broken into two sums;

In(L(aligned | i, k)) = Z Eiln(p:) + (1 — ki)n(1 — ;)

M
= kiln(\) + (1 — k;)In(1 — Z kidn(BA) + k)ln(1 — BA)
i=1 i=M+1
As (B, A\ are constant, the terms involving 5, \ can be taken out as factors from the sums, giving the
following result.

= (ki(ln(\) —In(1L = X)) +In(1 =X\ + > (k(In(BX) — In(1 = BA)) + In(1 — BA)
=1 i=M+1
= (In(\) = In(1 — Z + Min(1 = X) + (In(BA) — In(1— X)) > (k) + (N = M)in(1 — B))

As Zi‘il k; is equivalent to M * E(k), provided M, (and for the second summation, N — M) are sufficiently
large, the simplified equation in terms of N, M, 3, A is given;

= (In(\) = In(1 = X))(MN) + Min(1 — X) + (In(BA) — In(1 — BN))(N — M)(BX) + (N — M)in(1 — BN)
For the purposes of plotting this result, arbitrarily let N =90, M = 10
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Figure 11: Plot of mean log likelihood with respect to A



Consider the edge case M = N. Thus the expression for log-likelihood can be simplified to;
In(L(aligned | 7, k)) = Nin(1 — A) — ANIn(1 — ) + ANIn(\)

This is independent of the value for 3, which intuitively follows, as no pixels have average value u; = GA.

Task 6

Task 6a The average row-sum is found to be 1’25‘:’%;553, or approximately 23.7453727.

Task 6b As below
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Figure 12: Average 2D pattern assuming identical orientation

Task 6¢c  As below

Cluster 0 Cluster 1 Cluster 2 Cluster 3
0 5101520 0 5 101520 0 5 10 1520 0 5 101520

Figure 13: Representation of the four orientation class averages

Task 6d The average row-sum for the design matrix, can be simply calculated by the number of non-
empty pixels, (as all empty pixels have value 0) divided by the number of patterns. The length of vector
task6a (or equivalently task6b) represents the number of non-zero pixels, 1,556,153. Each component of
vector task6a is an index describing the position of a pattern vector in the design matrix. Each component
of vector task6b is an index describing the position of a 1 in each pattern. This effectively functions as a
coordinate system that can be used to fill the design matrix.

task_6_matrix = np.empty ((65535, 625))
for i in range(task6a.shape[0]):
task_6_matrix[task6al[il] [task6b[i]l] = 1

Figure 14: Reconstructing Design Matrix from Sparse Data




After the number of non-zero pixels are known, the column averages of the design matrix can be taken
as per task 4b. In order to sort the orientation classes the same K-Means algorithm can be used. Returning

the above plots (Figure 13).

Task 7

Task 7a Multiple techniques were used to reconstruct the master image, the resulting images are shown

below;

Cluster 0 Cluster 1 Cluster 2 Cluster 3
0 5101520 0 5101520 0 5101520 0 5 101520

0 0
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20 0
(a) Reconstruction using (b) Partial Reconstruction (4 Orientation Classes) using Factor
PCA and K-Means Analysis
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(c) Partial Reconstruction using PCA (d) Reconstruction (e) Reconstruction
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Figure 15: Results of Various Reconstruction Methods



K-Means + PCA Image Final Image

Figure 16: Original K-Means Reconstruction 4+ Heuristic Reconstruction Method

Koo + 7CA Image Fos image

Figure 17: Scaled Down Version of Figure 16
We are still unable to identify this person.

Task 7b  Solely employing K-Means resulted in a cluster that contained the majority of all samples, and
the rest of the clusters contained very few samples. This potentially indicated a poor separation of data.

Principal Component Analysis (PCA) was then used to reduce the number of dimensions of the dataset,
as K-Means performs poorly on data with high dimensions (Beyer et al., 1999). This is achieved by
minimising the sum of the distances of the projection of each point onto a vector from the initial point. In
practice this can be done by finding the eigenvectors of the covariance matrix with the highest eigenvalues
(solutions to the characteristic equation of the covariance matrix) taken as highest priority. In this case
the data was flattened into 25 dimensions, whilst preserving the maximum amount of relevant information.

Euclidean distance (the distance metric used by the K-Means algorithm) is a more viable distance
measurement in 25 dimensions, mitigating the inaccuracies of high dimensionality. Therefore, using PCA
to reduce the dimensionality of the data increases the separation between clusters and the efficacy of
K-Means unsupervised classification.

Other Methods of Reconstruction This report is not exhaustive enough to outline each method in
detail. The following are some (less effective) attempts, and why they were attempted.

e Factor Analysis - attempted using the orientation as the latent variable but failed to accurately
separate patterns.

e Gaussian Mixture Model - assumed normal distribution of the clusters - this was too sensitive to
initialisation and too computationally intensive to repeat frequently.
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e K-Means with Cosine Distance - Matrices were normalised before computing Euclidean distance
for K-Means (sachinruk, 2020), this returned similar result to Euclidean Distance when PCA was
applied to both before clsutering. Without PCA being applied to either Cosine similarity returned
a marginally better result than K-Means with Euclidean distance.

e Bisecting K-Means - assumed classes should be approximately equal in density and size.

The Heuristic Reconstruction Method After obtaining an ‘image candidate’ from one of the above
processes (in this case, PCA + K-Means), the following procedure was followed:

1. Each pattern was rotated and compared to the ‘candidate image’. The rotation with greatest simi-
larity (closest by Euclidean distance) was preserved in a new dataset, as shown in code below;
def find_best_rotation(img_reshaped, candidate_image):

best_similarity = np.inf
best_image = candidate_image
for j in range(4):
rotated_image = np.rot90(candidate_image, j)
similarity = np.linalg.norm(img_reshaped - rotated_image)
if similarity < best_similarity:
best_similarity = similarity
best_image = rotated_image
return best_image

2. The new dataset images were averaged to create a new ‘candidate image’
3. This process was repeated until the ‘candidate images’ converged.

The image on which they converged was Figure 16, the final image.
The image following Heuristic reconstruction is included alongside the image obtained prior, noise was
significantly reduced, but some detail may have been lost.

Al Use Report

GitHub Copilot was used for inline code completions (generating comments, filling in boilerplate, repet-
itive code from elsewhere in the notebook). Code was inspected before accepting completions.
ChatGPT-3.5 and ChatGPT-40 were used to generate IXTEX code in formatting the document.
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